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Abstract

A theoretical study is made of the so-called layering/crushing agglomeration
process in a rotating conical drum under steady-state continuous flow conditions.
A particular application is the separation of bitumen from the solid particles in
oil sands, where the nonwetting liquid is a bitumen-solvent mixture and the
wetting liquid is water. It may be assumed that the water is completely imbibed by
the agglomerating granules (particles), so that the system consists of granules
suspended in the nonwetting liquid. In the layering/crushing process, the
granules are divided into two nonoverlapping size distributions, the small
crushed granules and the large granules on which the layering takes place. The
agglomeration process therefore becomes a complicated example of three-phase
flow. The three phases are the continuous nonwetting liquid and the two granular
phases. The steady-state mass balance equations for the two groups of granules in
the rotating conical drum can be integrated approximately. The mean velocity of
the layered (large) granules parallel to the axis of the cone is directed from apex to
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base whereas the corresponding velocity of the crushed (small) granules is in the
opposite direction.

INTRODUCTION

In the spherical agglomeration process, a high concentration of
dispersed granules (agglomerates) with a changing size distribution is
agitated in a fluid environment consisting of two immiscible liquids,
preferentially wetting and nonwetting with respect to the solid material of
the granules. Since the wetting liquid is almost entirely absorbed in the
interstices between the individual solid grains of the agglomerating
granules, the latter may be regarded as suspended in the continuous
nonwetting liquid. There are several stages in the agglomeration process.
(i) Nucleation, in which primary particles of a powder feed combine to
form nuclei or seeds. (ii) Coalescence, which involves rapid growth of
granules by combination of a number of nuclei. (iii) Layering, when the
agglomerates reach a certain size. Larger agglomerates grow by coales-
cing with much smaller particles, which may be primary feed, nuclei, or
pieces of broken (crushed) agglomerates, hence the description layering/
crushing. In this paper we are mainly concerned with the layering/
crushing processes.

Recently (in Part I) the authors (/) studied the steady-state spherical
agglomeration process in a rotating conical drum, used to separate
bitumen from solid particles in oil sands. The wetting liquid was water
and the nonwetting (suspending) liquid a bitumen-solvent mixture.
From the continuity equation for the flow of granules suspended in the
bitumen-solvent liquid and experimental results, some general conclu-
sions were reached concerning the agglomerating granules in the conical
drum. In a second paper the spherical agglomeration process was treated
theoretically as multiphase flow by one of the authors (2). Most theories
of multiphase flow are confined to two phases, where one of the phases
consists of discrete particles and agglomeration is absent (3, 4). Because
of the agglomerating process, it is convenient to treat the granules in a
small mass range as a separate phase. The equation of continuity (mass
balance relation) for these granules includes a source term which
describes the different stages in the agglomeration process listed above.

As it is a formidable task to solve the “microscopic” equations of
motion giving the paths of the individual granules, the technique of so-
called volume averaging (or an equivalent technique) is usually em-
ployed to investigate the mass-balance and momentum-balance equa-
tions of multiphase flow theory (5, 6). Parameters occurring in these
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equations of motion relate to averages over a volume which is large
compared with the volume of a single granule but smail on the scale of
macroscopic inhomogeneities. Each phase, whether dispersed or con-
tinuous, is regarded as filling the whole volume of the physical system, so
that the phases behave as interpenetrating continua. This would appear
to raise difficulties when the granules over a small mass range are treated
as a continuous phase. However, a consequence of size segregation is that
in general each small mass range will occupy a fraction of the whole
volume. Clearly, the mass range cannot be too small unless the size
distribution is very narrow or the size segregation is pronounced.

In the layering/crushing process, where the sizes of the larger (layered)
and smaller (crushed) granules do not overlap, it is possible to treat the
agglomeration as three-phase flow. The three phases are the continuous
suspending liquid and two discrete phases, the layered and crushed
granules. We shall only examine here the mass balance equations for
these three phases and shall return to the much more difficult problem of
the momentum balance equations in a later paper. Although many
authors have studied the latter equations for multiphase flow in the
absence of agglomeration, differences in their interpretation exist (3) and
the presence of agglomeration creates additional difficulties.

MASS BALANCE (CONTINUITY) EQUATION IN
LAYERING/CRUSHING AGGLOMERATION

Choosing a continuous distribution of granule sizes, the continuity
equation (also called the population balance equation) for granules of
mass m is

9 4 ¥ (nmpwom)) + - (G (m)a(m)] = S(m) (1)

where n(m)dm is the number of granules/unit volume in the mass range
mm + dm; v(m) is the velocity of a granule of mass m; G,(m) is that part of
the growth function which is not directly due to agglomeration or its
opposite comminution; and S(m) is the source term. The complete growth
function which we denote by G(m) is defined as the rate at which granules
grow beyond their mass m, i.e., it equals dm/dt. The last term on the left-
hand side of Eq. (1) was derived by Hulburt and Katz (7) from a statistical
mechanical treatment (see also Ramkrishna and Borwanker (8 9) and
Ramabhadran and Seinfeld (10)). In spherical agglomeration, a source of
variation with time in granular mass is entrapment of the suspending
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(nonwetting) liquid in the pores between the solid grains of the granules
and this would account for the growth term G (m). Such entrapment may
be appreciable in the coalescence stage when the granules are still small
but its significance dimishes as the granules grow.

Precisely S(m)dm is the rate of change with time due to agglomeration
in the number of granules/unit volume in the mass range m,m + dm. We
shall assume that the agglomerates have reached a sufficient size where
coalescence can be neglected and consider only the layering/crushing
process in which the material to be layered is provided by crushed pieces
and by added powders. The source term S(m) may then be written as

S(m) = - E‘:T, (Go(m)n(m)] ~ B(m)n(m)

+ J' " B (R)v()p(m m)dm + C(m) )

where the different terms on the right-hand side have the following
meanings. The first term accounts for layering, the next two terms
crushing, and the last term the addition of powder. G,(m) is the growth
function due to layering. On combining with G,(m), we have

G(m) = G(m) + Gy(m) = dm/dt 3)

B(m) is the fraction of granules of mass m that are crushed in unit time.
The integral term in Eq. (2), when multiplied by dm, is the rate of
production of the number of granules in mass range mym + dm from the
crushing of all granules larger than m (17). The upper limit of integration
m, (> m) is the mass of the largest granule that is crushed. p(mgn)dm is
the probability of producing a daughter granule in the mass range
mm + dm upon crushing of a parent granule of mass i, and v(r) is the
avreage number of daughter granules. If more than two daughters are
produced as a result of the crushing of the mass 1, then v(rr) > 2.
C(m)dm is the rate (number/unit time) at which particles of fine powder
in the mass range m,m + dm are added to unit volume of the agglomerat-
ing system. The quantities n(m), v(m), G,(m), and S(m), which are
examples of the volume averages mentioned in the Introduction, all
depend on their position in the agglomerating apparatus and also on
time ¢ in the unsteady state. It is convenient to introduce an effective
fraction of granules crushed:

Bum) = Bm) = s [ Bmn(myvemp(mmdm (4

1
n(m)
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and also an effective source term:

S.(m)

1

Sm) = - [Gy(myn(m)]

d
= S (Gm)n(m)] = B(m)n(m) + C(m) )

so that the last term of the left-hand side of Eq. (1) has been absorbed into
the source function. (In Part I (), the growth term G () and the integral
in Eq. (4) were omitted. Thus G(m) should include G,(m), and B(m)
should be interpreted as B(m) in Part 1)

STEADY-STATE FLOW CONDITIONS

Consider the steady state when n(m) is independent of time ¢ in Eq. (1).
On multiplying Eq. (1) by m and integrating with respect to m, we
obtain

V-J’mn(m)v(m)dm = fmSe(m)dm (6)

where we have interchanged the orders of the operation V and integration
with respect to m. Suppose, for simplicity, that the feed has negligible
velocity compared with the velocity of the granules. Then the left-hand
side of Eq. (6) is the net rate at which granular mass leaves unit volume,
and in steady-state conditions this should equal the net rate at which
mass of powder is being provided, i.e.

v. j mn(m)v(m)dm = f mC(m)dm )

If no feed is added, then the right side of Eq. (7) equals zero. Subtracting
Eq. (7) from Eq. (6) and making use of Eq. (5), it follows that

Jm E%{ [G(mIn(m)jdm = -—JmBe(m)n(m)dm (8)

The particles in the agglomerate occur in three separation size groups,
the larger (layered) granules (mass m’), the smaller (crushed) granules
(mass m"), and powder particles (mass m'’’) where m’ > m"” > m'"’. The
integral on the left-hand side of Eq. (7) extends over the ranges of m’' and

e

m" whereas that on the right-hand side of Eq. (7) only over the range m'"".
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We are assuming that no overlap occurs in the ranges of m’, m”, and m’"".
The degree of entrapment of suspending (nonwetting) liquid within the
granules decreases as the granules grow by agglomeration. We shall
ignore entrapment in the larger (layered) granules, ie., we assume
G,(m") = 0 and hence G;(m") = Gy(m"). It is convenient to combine all
terms in S/(m) which differ from zero only in the range of m” by
introducing

D(m) = BLm) + s = [G(m)n(m)] ©

D(m) is dominated by B(m), so that D(m) > 0. Thus we postulate that
Gy(m) = 0 unless m lies in the range of m’, D(m) = 0 unless m is in the
range of m”, and C(m) = 0 unless m is in the range of m'”’. Equation (8)
can now be written as

fm' (TdrrT [Gy(m" )n(m")|dm' = —-fm"D(m")n(m")dm" (10)

It is possible to carry out an integration of Eq. (1) in the steady-state
condition for a rotating conical drum agglomeration apparatus. Let z
denote distance along the axis of the conical drum and A(z) the cross-
sectional area at z which is occupied by the agglomerating charge. Also
let v,(m) be the component of the velocity vector v(m) parallel to the axis z
of the drum and let an overbar denote an average over the cross-sectional
area A(z). Then we can prove that (/, 2)

4o @empfm) + = 22O nmyom) = 5m) (1)

If the origin on the z axis is chosen at the true (geometrical) apex of the
cone, then a reasonable approximation is A(z) ~ z2 in which case Eq. (11)
becomes

2. (G im)) + 2 nGmyo.m) = Sm) (12)

A good approximation is n(m)v,(m) =~ n(m)v,(m) if n(m) is very nearly
constant in any cross-sectional normal to the z axis. The solution of Eq.
(12) is then
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v.0m) = Zznl(m) f 0 225 (m)dz (13)

where Z =1z marks the apex of the operating conical drum. Form = m’ or
m = m", we may assume that n(m) = 0 at z = z,. (In Eq 29 of Part I, the
lower 11m1t of integration should be z,)

In the layering/crushing process discussed here we can apply Eq. (13)
separately to the two nonoverlapping size distributions (m' and m").
Making use of Eq. (9), we can write Eq. (5) as

Sdm) = = —L{Gmyn(m)| — Dimyn(m) (14)

where m does not include m'”. Since Go(m”) = 0 and D(m') = 0, it follows
from Egs. (13) and (14) that

N 1 Ty
o(m) = = | (15)
and
v,(m") = - z_z—n(l__m?)-[:, 22 D(m"yn(m")dz (16)

These equations yield an important result. Since D(m") > 0, the right-
hand side of Eq. (10) is always negative and it follows from Eq. (16) that
v,(m"”) <0, i.e., the mean axial velocity of the smaller crushed granules is
directed from the base to the apex of the conical drum. In contrast,
assuming that the integrand on the left-hand side of Eq. (10) does not
change sign over the range of m’, then v (m") > 0. The mean velocity of
flow parallel to the axis of the cone of the larger (layered) granules is
toward the base of the conical drum. These conclusions are consistent
with the results of two of the authors who observe that in a continuous
run of their rotating conical vessel, any mixture of large and small
granules will tend to segregate with the large granules at the base and the
small ones at the apex (12). Also, Sugimoto (/3) has described granula-
tion experiments where fine powder, fed into the middle of a rotating
cone, segregates into fine and coarse granules at the apex and base,
respectively.
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SOME QUALITATIVE FEATURES OF n(m) AND S,(m) IN
STEADY-STATE FLOW

In discussing the form of n(m) (strictly n(m)Am over a small mass
range Am), it is convenient to display explicitly the dependence of n(m)
on distance along the axis z and so we write n(m) = ii(m,z). (Similarly, we
shall write S(m) = S(m,z).) In Part I (), schematic plots of 7i(m,z) were
drawn for the agglomeration process in the rotating conical drum, which
included both coalescence and layering/crushing. These were suggested
by available information on granule distribution obtained from mea-
surements and also visual observations. Figures 1 and 2 show corre-
sponding schematic plots of 7i(m,z) for the layering/crushing process in

4<2;
4 m’ » m”
n{m,z)
Zy
< /E(\é
m” m’ m

FIG. 1. Schematic representation of n(m,z) in conical drum. Constant z contours in (1,m)
plane for layered granules (mass m') and crushed granules (mass m”).

/ /
m; < My

/ V4
m{’ m| = mp

n{m,z)

F4

FIG. 2. Schematic form of n(m,z) in conical drum. Constant granular mass contours in (n,z)
plane for layered (") and crushed (m") granules.
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the rotating conical drum. Constant z contours in the (n,m) plane are
drawn in Fig. 1 for two different values of z, which are distinguished by
the suffixes 1 and 2, where z, < z,. Clearly the plots of #(m,z) for the two
sizes of granules (m’ and m") are completely separate along the m axis,
since there is no overlap. Also n(m",z) may exceed n(m',z) by orders of
magnitude but the curves in Fig. 1 are not drawn to scale. In Fig. 2,
constant m contours are drawn in the (7,z) plane, again schematically.
Curves for two masses m} < m} of the larger granules and two masses
m} =~ m5 of the smaller granules are shown. In that section of the conical
drum where layering/crushing takes place, the mass of the layered
granule must be increasing with z and hence the number 7i(m’,z) must be
decreasing. The crushed granules need not grow in size as z increases
since they are not agglomerating. That their mean velocity parallel to the
axis is directed toward the apex suggests that their number decreases with
an increase in z. One characteristic that seems reasonable is that the plots
of A(m’',z) and A(m",z) along the z axis should cover approximately the
same interval of the axis.

Let us first examine S,(m.z) in the case where powder feed is absent, i.e.,
C(m) = 0. Then from Egs. (6) and (7)

fmge(m,z)dm =0 (17)

Also, noting that D(m") > 0 and Gy(m") =0, by Eq. (14), S.(m") <0.
Relation (17) is consistent with S (m") > 0, which we shall assume here
and which, since D(m') = 0 by Eq. (14), implies that G,(m")n(m’) decreases
as m' increases. (It is ‘observed experimentally that G,(m’') (= dm'/dr)
actually increases with m’, hence the decrease of n(m’) with increasing m’
must be more marked.) Using these results, schematic plots of S(m,z) as a
function of m for two different fixed z can now be drawn. As illustrated in
Fig. 3, S,(m,z) consists of a negative portion for the smaller granules (")
and a position portion of the larger granules (). In view of the weighting
factor m in Eq. (17), the area under the negative portion in Fig. 3 is very
much larger than the area under the positive portion, but these areas are
not drawn to scale. Making use of Figs. 2 and 3, characteristic plots of
S.(m,z) against z for given granular masses are shown in Fig. 4, again not
drawn to scale. The curves in Fig. 4 are consistent with the results that
v,(m") > 0 by Eq. (15) and v,(m") < 0 by Eq. (16). The general profiles in
Figs. 3 and 4 still apply if C(m) # 0 and S,(m’) > 0.

CONTINUITY EQUATION FOR THE SUSPENDING LIQUID PHASE

Let p. be the (constant) density of the suspending (nonwetting) liquid, v,
its velocity, ¢ the fraction of the total volume occupied by the liquid, and
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i
_ i< 2z,
Se (m,z)
m e
o /
m m

FI1G. 3. Schematic plot of gg(m,z) as a function of m for different fixed z. m’ and m” equal
masses of layered and crushed granules, respectively.

m{ < mj
4

FG. 4. §e(m,z) plotted as a function of z for different fixed m’ and m”.

q. a source term which is due to the expulsion or capture of the liquid by
the granuies during agglomeration. The quantities v,, €, and ¢, are local
volume averages. v, is the pore velocity and ev, the so-called superficial
velocity. (In the experiments on extraction of bitumen from oil sands,
some bitumen-solvent mixture, which constitutes the suspending liquid,
is trapped in the granules) In steady-state flow, the mass balance
equation is

V- (p.eve) = ¢, (18)

The left-hand side is the net rate at which the suspending liquid mass is
departing from unit volume of the agglomerating system. Thus ¢, is the
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rate of charge with time in the mass of suspending liquid being added to
unit volume of the system due to expulsion or capture of this liquid by the
granules in the agglomeration process. Let us assume that the rate of
increase of granular mass G,(m), introduced in Eq. (1), is due to the
entrapment (or occlusion) of the suspending nonwetting liquid. Then

4. = = [n(m")G\(m")dm" (19)

assuming that Gy(m") = 0. If v, is the z-component of the velocity v, and
an overbar again denotes a cross-sectional average in the conical drum,
then we derive from Eq. (18) the equation corresponding to Eq. (12) for
granules, namely:

d — , 2—  _
—d—Z (evcz) + zsvcz - qc/pc (20)
with solution
= (@o)eery + 5 | ANz @)
P2 29

In the experiments with the conical drum on bitumen separation from oil
sands by the agglomeration method (12, 14), the oil sands are fed in at the
apex and the suspending (bitumen-solvent) liquid at the base. The drum
is designed so that the bulk of the suspending medium flows from the
base to the apex of the conical drum under gravity, so that the first term
on the right-hand side of Eq. (21) is negative. With change in agglomerate
size, the so-called residual saturation of the suspending medium (the
equilibrium amount remaining with the agglomerate bed after gravity
drainage) is illustrated in Fig. 5. This shows that as the granules grow
when they travel from apex to base during agglomeration, they are
expelling the nonwetting liquid, i.e., g(z) > 0, and therefore G,(m") < 0.
Furthermore, g(z) decreases with an increase in z, as shown schematic-
ally in Fig. 6. It follows from Eq. (21) that the cross-sectional average
superficial velocity v, increases in magnitude from the base to the apex
z = z,, which is to be expected since the area A(z) is least at z = z,
Equation (21) may be used in the region of coalescence as well as in that
of layering/crushing,
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0.10
0.08—
TO/M|
0.06—
°
0.04+
4 ] L | 1 1
0 1,0 2.0 3.0

MEAN AGGLOMERATE DIAMETER (cm)

FIG. 5. Plot of ratio (suspending (nonwetting) liquid content to solids content) within a
granule as a function of the granule diameter in experiments with the conical drum on
bitumen separation from oil sands, described in Refs. 12 and 14.

Ec(z)

Zg z 2,
apex base

F1G. 6. Schematic plot of g,(z) as a function of z in bitumen separation from oil sands
iz 14).
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DISCUSSION

In this paper we have only considered the motion of the granules and
suspending liquid parallel to the axis of the rotating conical drum. The
velocity components of both granules and suspending liquid in a cross-
sectional plane of the drum far exceed the corresponding velocities
parallel to the axis. The latter are due to spiralling motions. As explained
in Part I, the much larger velocity components normal to the drum axis
are eliminated from the continuity (mass balance) equations under
steady-state conditions by applying the divergence theorem to a cross-
sectional slab of the conical drum. For our model of the layering/
crushing process, we are able to separate the motion of the layered
granules from that of the crushed granules. This yields a result, which
although admittedly approximate, is an example of size segregation, a
phenomenon which indeed is not well understood. It is striking that the
use of the mass balance equation for the granules is sufficient to yield our
predictions that the layered and crushed granules move on the average in
opposite senses, parallel to the drum axis.

ERRATUM FOR PART | (1)

Some have already been mentioned in the text. Additional corrections
are as follows:

Equation (24): should read ff):MD‘ N(D)dD = constant

Page 90, 6 lines from bottom of 2nd paragraph:
“m increases with m” should read “m increases with z”

The line following Eq. (29) should read:
“where charge is fed into the drum at position z = z;”
in place of:
“where v(m,z) must be finite at the apex z = 0) of the conical drum”
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