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Abstract 

A theoretical study is made of the so-called layering/crushing agglomeration 
process in a rotating conical drum under steady-state continuous flow conditions. 
A particular application is the separation of bitumen from the solid particles in 
oil sands, where the nonwetting liquid is a bitumen-solvent mixture and the 
wetting liquid is water. It may be assumed that the water is completely imbibed by 
the agglomerating granules (particles), so that the system consists of granules 
suspended in the nonwetting liquid. In the layering/crushing process, the 
granules are divided into two nonoverlapping size distributions, the small 
crushed granules and the large granules on which the layering takes place. The 
agglomeration process therefore becomes a complicated example of three-phase 
flow. The three phases are the continuous nonwetting liquid and the two granular 
phases. The steady-state mass balance equations for the two groups of granules in 
the rotating conical drum can be integrated approximately. The mean velocity of 
the layered (large) granules parallel to the axis of the cune is directed from apex to 
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1450 LEVINE, MEADUS, AND SPARKS 

base whereas the corresponding velocity of the crushed (small) granules is in the 
opposite direction. 

INTRODUCTION 

In the spherical agglomeration process, a high concentration of 
dispersed granules (agglomerates) with a changing size distribution is 
agitated in a fluid environment consisting of two immiscible liquids, 
preferentially wetting and nonwetting with respect to the solid material of 
the granules. Since the wetting liquid is almost entirely absorbed in the 
interstices between the individual solid grains of the agglomerating 
granules, the latter may be regarded as suspended in the continuous 
nonwetting liquid. There are several stages in the agglomeration process. 
(i) Nucleation, in which primary particles of a powder feed combine to 
form nuclei or seeds. (ii) Coalescence, which involves rapid growth of 
granules by combination of a number of nuclei. (iii) Layering, when the 
agglomerates reach a certain size. Larger agglomerates grow by coales- 
cing with much smaller particles, which may be primary feed, nuclei, or 
pieces of broken (crushed) agglomerates, hence the description layering/ 
crushing. In this paper we are mainly concerned with the layering/ 
crushing processes. 

Recently (in Part I) the authors ( I )  studied the steady-state spherical 
agglomeration process in a rotating conical drum, used to separate 
bitumen from solid particles in oil sands. The wetting liquid was water 
and the nonwetting (suspending) liquid a bitumen-solvent mixture. 
From the continuity equation for the flow of granules suspended in the 
bitumen-solvent liquid and experimental results, some general conclu- 
sions were reached concerning the agglomerating granules in the conical 
drum. In a second paper the spherical agglomeration process was treated 
theoretically as multiphase flow by one of the authors (2). Most theories 
of multiphase flow are confined to two phases, where one of the phases 
consists of discrete particles and agglomeration is absent (3, 4). Because 
of the agglomerating process, it is convenient to treat the granules in a 
small mass range as a separate phase. The equation of continuity (mass 
balance relation) for these granules includes a source term which 
describes the different stages in the agglomeration process listed above. 

As it is a formidable task to solve the “microscopic” equations of 
motion giving the paths of the individual granules, the technique of so- 
called volume averaging (or an equivalent technique) is usually em- 
ployed to investigate the mass-balance and momentum-balance equa- 
tions of multiphase flow theory (5, 6). Parameters occurring in these 
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THEORY OF SPHERICAL AGGLOMERATION. II 1451 

equations of motion relate to averages over a volume which is large 
compared with the volume of a single granule but small on the scale of 
macroscopic inhomogeneities. Each phase, whether dispersed or con- 
tinuous, is regarded as filling the whole volume of the physical system, so 
that the phases behave as interpenetrating continua. This would appear 
to raise difficulties when the granules over a small mass range are treated 
as a continuous phase. However, a consequence of size segregation is that 
in general each small mass range will occupy a fraction of the whole 
volume. Clearly, the mass range cannot be too small unless the size 
distribution is very narrow or the size segregation is pronounced. 

In the layering/crushing process, where the sizes of the larger (layered) 
and smaller (crushed) granules do not overlap, it is possible to treat the 
agglomeration as three-phase flow. The three phases are the continuous 
suspending liquid and two discrete phases, the layered and crushed 
granules. We shall only examine here the mass balance equations for 
these three phases and shall return to the much more difficult problem of 
the momentum balance equations in a later paper. Although many 
authors have studied the latter equations for multiphase flow in the 
absence of agglomeration, differences in their interpretation exist (3) and 
the presence of agglomeration creates additional difficulties. 

MASS BALANCE (CONTINUITY) EQUATION IN 
LAYERING/CRUSHING AGGLOMERATION 

Choosing a continuous distribution of granule sizes, the continuity 
equation (also called the population balance equation) for granules of 
mass m is 

d a n ( m )  + V * (n(m)v(m))  + [G, (m)n(m)]  = S(m)  at 

where n(m)dm is the number of granules/unit volume in the mass range 
m,m + dm; v(m) is the velocity of a granule of mass m; G,(m) is that part of 
the growth function which is not directly due to agglomeration or its 
opposite comminution; and S(m) is the source term. The complete growth 
function which we denote by G(m) is defined as the rate at which granules 
grow beyond their mass m, i.e., it equals dmldt. The last term on the left- 
hand side of Eq. (1) was derived by Hulburt and Katz (7) from a statistical 
mechanical treatment (see also Ramkrishna and Borwanker (8, 9) and 
Ramabhadran and Seinfeld (10)). In spherical agglomeration, a source of 
variation with time in granular mass is entrapment of the suspending 
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1452 LEVINE, MEADUS, AND SPARKS 

(nonwetting) liquid in the pores between the solid grains of the granules 
and this would account for the growth term G,(m). Such entrapment may 
be appreciable in the coalescence stage when the granules are still small 
but its significance dimishes as the granules grow. 

Precisely S(m)dm is the rate of change with time due to agglomeration 
in the number of granuleshnit volume in the mass range m,m + dm. We 
shall assume that the agglomerates have reached a sufficient size where 
coalescence can be neglected and consider only the layeringlcrushing 
process in which the material to be layered is provided by crushed pieces 
and by added powders. The source term S(m) may then be written as 

m0 + lm B(f i )n( f i )v (r fz )p(m,f i )df i  + C(m)  (2) 

where the different terms on the right-hand side have the following 
meanings. The first term accounts for layering, the next two terms 
crushing, and the last term the addition of powder. G,(m) is the growth 
function due to layering. On combining with Gl(m), we have 

G(m) = G,(m) + Gz(m) = dm/dt (3) 

B(m) is the fraction of granules of mass m that are crushed in unit time. 
The integral term in Eq. (2), when multiplied by dm, is the rate of 
production of the number of granules in mass range m,m + dm from the 
crushing of all granules larger than m (11). The upper limit of integration 
mo (> m)  is the mass of the largest granule that is crushed. p(m,m)dm is 
the probability of producing a daughter granule in the mass range 
m,m + dm upon crushing of a parent granule of mass m, and v(m) is the 
avreage number of daughter granules. If more than two daughters are 
produced as a result of the crushing of the mass m, then v(m) > 2. 
C(m)dm is the rate (numbedunit time) at which particles of fine powder 
in the mass range m,m + dm are added to unit volume of the agglomerat- 
ing system. The quantities n(m), v(m), Gl(m), and S(m), which are 
examples of the volume averages mentioned in the Introduction, all 
depend on their position in the agglomerating apparatus and also on 
time t in the unsteady state. It is convenient to introduce an effective 
fraction of granules crushed: 
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THEORY OF SPHERICAL AGGLOMERATION. II 1453 

and also an effective source term: 

( 5 )  
- d - - - [G(m)n(m)] - B,(m)n(m) + C(m)  drn 

so that the last term of the left-hand side of Eq. (1) has been absorbed into 
the source function. (In Part I (I), the growth term Gl(m) and the integral 
in Eq. (4) were omitted. Thus G(m) should include Gl(m), and B(m) 
should be interpreted as Bp(m) in Part I.) 

STEADY-STATE FLOW CONDITIONS 

Consider the steady state when n(m) is independent of time f in Eq. (1). 
On multiplying Eq. (1) by m and integrating with respect to m, we 
obtain 

V .  mn(m)v(m)dm = mS,(rn)dm I I 
where we have interchanged the orders of the operation V and integration 
with respect to m. Suppose, for simplicity, that the feed has negligible 
velocity compared with the velocity of the granules. Then the left-hand 
side of Eq. (6) is the net rate at which granular mass leaves unit volume, 
and in steady-state conditions this should equal the net rate at which 
mass of powder is being provided, i.e.: 

V .  I mn(m)v(m)dm = I mC(m)dm (7) 

If no feed is added, then the right side of Eq. (7) equals zero. Subtracting 
Eq. (7) from Eq. (6) and making use of Eq. (5) ,  it follows that 

I m  & [G(m)n(m)]dm = - I mB,(m)n(m)dm (8) 

The particles in the agglomerate occur in three separation size groups, 
the larger (layered) granules (mass m‘), the smaller (crushed) granules 
(mass m”), and powder particles (mass m”‘) where m’ > m“ > m”’. The 
integral on the left-hand side of Eq. (7) extends over the ranges of m’ and 
m“ whereas that on the right-hand side of Eq. (7) only over the range m’”. 
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1454 LEVINE, MEADUS, AND SPARKS 

We are assuming that no overlap occurs in the ranges of m‘, m”, and m“’. 
The degree of entrapment of suspending (nonwetting) liquid within the 
granules decreases as the granules grow by agglomeration. We shall 
ignore entrapment in the larger (layered) granules, i.e., we assume 
G2(m”) = 0 and hence Gl(m”) = Gz(m”). It is convenient to combine all 
terms in Sdm) which differ from zero only in the range of m” by 
introducing 

D(m) is dominated by B(m), so that D(m) > 0. Thus we postulate that 
G2(m) = 0 unless m lies in the range of m’, D(m) = 0 unless m is in the 
range of m”, and C(m) = 0 unless m is in the range of m”’. Equation (8) 
can now be written as 

d Im’ dm’ [G2(m’)n(m‘)]dm‘ = - m’fD(m”)n(m’f)dm” (10) 

It is possible to carry out an integration of Eq. (1) in the steady-state 
condition for a rotating conical drum agglomeration apparatus. Let z 
denote distance along the axis of the conical drum and A(z) the cross- 
sectional area at z which is occupied by the agglomerating charge. Also 
let u,(m) be the component of the velocity vector v(m) parallel to the axis z 
of the drum and let an overbar denote an average over the cross-sectional 
area A(z). Then we can prove that ( I ,  2) 

If the origin on the z axis is chosen at the true (geometrical) apex of the 
cone, then a reasonable approximation isA(z) - zz, in which case Eq. (1 1) 
becomes 

-- 
A good approximation is n(m)u,(m) N n(m)u,(m) if n(m) is very nearly 
constant in any cross-sectional normal to the z axis. The solution of Eq. 
(12) is then 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
1
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



THEORY OF SPHERICAL AGGLOMERATION. II 1455 

where z = zo marks the apex of the operating conical drum. Form = m’ or 
m = m”, we may assume that n(m) = 0 at z = zo. (In Eq. 29 of Part I, the 
lower limit of integration should be z6) 

In the layeringlcrushing process discussed here we can apply Eq. (13) 
separately to the two nonoverlapping size distributions (m’ and m”). 
Making use of Eq. (9), we can write Eq. (5) as 

where m does not include m”’. Since G2(mf’) = 0 and D(m’) = 0, it follows 
from Eqs. (13) and (14) that 

and 

1 r z  

These equations yield an important result. Since D(m”) > 0, the right- 
hand side of Eq. (10) is always negative and it follows from Eq. (16) that 
uz(m”) < 0, i.e., the mean axial velocity of the smaller crushed granules is 
directed from the base to the apex of the conical drum. In contrast, 
assuming that the integrand on the left-hand side of Eq. (10) does not 
change sign over the range of m‘, then o,(m‘) > 0. The mean velocity of 
flow parallel to the axis of the cone of the larger (layered) granules is 
toward the base of the conical drum. These conclusions are consistent 
with the results of two of the authors who observe that in a continuous 
run of their rotating conical vessel, any mixture of large and small 
granules will tend to segregate with the large granules at the base and the 
small ones at the apex (22). Also, Sugimoto (23) has described granula- 
tion experiments where fine powder, fed into the middle of a rotating 
cone, segregates into fine and coarse granules at the apex and base, 
respectively. 
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1456 LEVINE, MEADUS, AND SPARKS 

SOME QUALITATIVE FEATURES OF n(m) AND S.(m) IN 
STEADY-STATE FLOW 

-_ __ 
In discussing the form of n(m) (strictly n(m)Am over a small mass 

range Am), it is convenient to display explicitly __ the dependence of n(m) 
on distance along the axis z and so we write n(m) = ii(m,z). (Similarly, we 
shall write S ? )  = $(m,z).) In Part I (I), schematic plots of E(rn,z) were 
drawn for the agglomeration process in the rotating conical drum, which 
included both coalescence and layering/crushing. These were suggested 
by available information on granule distribution obtained from mea- 
surements and also visual observations. Figures l and 2 show corre- 
sponding schematic plots of fi(rn,z) for the layering/crushing process in 

FIG. 1 .  Schematic representation of &,z) in conical drum. Constant z contours in ( Z m )  
plane for layered granules (mass m') and crushed granules (mass m"). 

FIG. 2. Schematic form of n(m,z) in conical drum. Constant granular mass contours in (G,z) 
plane for layered (m') and crushed (m") granules. 
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the rotating conical drum. Constant z contours in the (Em) plane are 
drawn in Fig. 1 for two different values of z, which are distinguished by 
the suffixes I and 2, where zI < z2. Clearly the plots of fi(m,z) for the two 
sizes of granules (m’ and m”) are completely separate along the m axis, 
since there is no overlap. Also n(m”,z) may exceed n(m’,z) by orders of 
magnitude but the curves in Fig. 1 are not drawn to scale. In Fig. 2, 
constant m contours are drawn in the (E,z) plane, again schematically. 
Curves for two masses m: < mi of the larger granules and two masses 
my 2~ m; of the smaller granules are shown. In that section of the conical 
drum where layering/crushing takes place, the mass of the layered 
granule must be increasing with z and hence the number Z(m’,z) must be 
decreasing. The crushed granules need not grow in size as z increases 
since they are not agglomerating. That their mean velocity parallel to the 
axis is directed toward the apex suggests that their number decreases with 
an increase in z. One characteristic that seems reasonable is that the plots 
of fi(m’,z) and Z(m”,z) along the z axis should cover approximately the 
same interval of the axis. 

Let us first examine $(m,z) in the case where powder feed is absent, i.e., 
C(m) = 0. Then from Eqs. (6) and (7) 

\mS,(m,z)dm = 0 (17) 

Also, noting that D(rn”) > 0 and G2(m”) = 0, by Eq. (14), Se(m”) < 0. 
Relation (17) is consistent with Sc(m’) > 0, which we shall assume here 
and which, since D(m‘) = 0 by Eq. (14), implies that G,(rn’)n(rn’) decreases 
as m’ increases. (It is ’observed experimentally that G2(m’) (= dm’ldt) 
actually increases with m‘, hence the decrease of n(m’) with increasing m‘ 
must be more marked.) Using these results, schematic plots of $(m,z) as a 
function of m for two different fixed z can now be drawn. As illustrated in 
Fig. 3, S,(rn,z) consists of a negative portion for the smaller granules (m”) 
and a position portion of the larger granules (m’). In view of the weighting 
factor m in Eq. (17), the area under the negative portion in Fig. 3 is very 
much larger than the area under the positive portion, but these areas are 
not drawn to scale. Making use of Figs. 2 and 3, characteristic plots of 
S,(m,z) against z for given granular masses are shown in Fig. 4, again not 
drawn to scale. The curves in Fig. 4 are consistent with the results that 
u,(m‘) > 0 by Eq. (15) and u,(m”) < 0 by Eq. (16). The general profiles in 
Figs. 3 and 4 still apply if C(m) # 0 and Se(m’) > 0. 

__ 

CONTINUITY EQUATION FOR THE SUSPENDING LIQUID PHASE 

Let p, be the (constant) density of the suspending (nonwetting) liquid, v, 
its velocity, E the fraction of the total volume occupied by the liquid, and 
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1458 LEVINE, MEADUS, AND SPARKS 

il 

FIG. 3. Schematic plot of $(m,z) as a function of m for different fixed z. m' and m" equal 
masses of layered and crushed granules, respectively. 

iI 

! 
FIG. 4. S,(m,z) plotted as a function of z for different fixed m' and m" 

q, a source term which is due to the expulsion or capture of the liquid by 
the granules during agglomeration. The quantities v,, E ,  and q, are local 
volume averages. v, is the pore velocity and EV, the so-called superficial 
velocity. (In the experiments on extraction of bitumen from oil sands, 
some bitumen-solvent mixture, which constitutes the suspending liquid, 
is trapped in the granules.) In steady-state flow, the mass balance 
equation is 

The left-hand side is thk net rate at which the suspending liquid mass is 
departing from unit volume of the agglomerating system. Thus qc is the 
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THEORY OF SPHERICAL AGGLOMERATION. II 1459 

rate of charge with time in the mass of suspending liquid being added to 
unit volume of the system due to expulsion or capture of this liquid by the 
granules in the agglomeration process. Let us assume that the rate of 
increase of granular mass G,(m), introduced in Eq. (I) ,  is due to the 
entrapment (or occlusion) of the suspending nonwetting liquid. Then 

n(m")Gl(m")dm" (19) 

assuming that Gl(m') = 0. If u, is the z-component of the velocity vc and 
an overbar again denotes a cross-sectional average in the conical drum, 
then we derive from Eq. (18) the equation corresponding to Eq. (12) for 
granules, namely: 

with solution 

In the experiments with the conical drum on bitumen separation from oil 
sands by the agglomeration method (12, 14), the oil sands are fed in at the 
apex and the suspending (bitumen-solvent) liquid at the base. The drum 
is designed so that the bulk of the suspending medium flows from the 
base to the apex of the conical drum under gravity, so that the first term 
on the right-hand side of Eq. (21) is negative. With change in agglomerate 
size, the so-called residual saturation of the suspending medium (the 
equilibrium amount remaining with the agglomerate bed after gravity 
drainage) is illustrated in Fig. 5. This shows that as the granules grow 
when they travel from apex to base during agglomeration, they are 
expelling the nonwetting liquid, i.e., ijc(z) > 0, and therefore G,(m") < 0. 
Furthermore, qc(z) decreases with an increase in z, as shown schematic- 
ally in Fig. 6. It follows from Eq. (21) that the cross-sectional average 
superficial velocity EU, increases in magnitude from the base to the apex 
z = z,, which is to be expected since the area A(z)  is least at z = z,. 
Equation (21) may be used in the region of coalescence as well as in that 
of layeringkrushing. 
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0.osl- 2 
I 

- 

2.0 3.0 

0.04k 
W 

MEAN AGGLOMERATE DIAMETER (cm) 
FIG. 5. Plot of ratio (suspending (nonwetting) liquid content to solids content) within a 
granule as a function of the granule diameter in experiments with the conical drum on 

bitumen separation from oil sands, described in Refs. 12 and 14. 

FIG. 6. Schematic plot of tC(z) as a function of z in bitumen separation from oil sands 
(12, 14). 
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DISCUSSION 

In this paper we have only considered the motion of the granules and 
suspending liquid parallel to the axis of the rotating conical drum. The 
velocity components of both granules and suspending liquid in a cross- 
sectional plane of the drum far exceed the corresponding velocities 
parallel to the axis. The latter are due to spiralling motions. As explained 
in Part I, the much larger velocity components normal to the drum axis 
are eliminated from the continuity (mass balance) equations under 
steady-state conditions by applying the divergence theorem to a cross- 
sectional slab of the conical drum. For our model of the layering/ 
crushing process, we are able to separate the motion of the layered 
granules from that of the crushed granules. This yields a result, which 
although admittedly approximate, is an example of size segregation, a 
phenomenon which indeed is not well understood. It is striking that the 
use of the mass balance equation for the granules is sufficient to yield our 
predictions that the layered and crushed granules move on the average in 
opposite senses, parallel to the drum axis. 

ERRATUM FOR PART I ( 7 )  

Some have already been mentioned in the text. Additional corrections 
are as follows: 

2 ‘t4D Equation (24): should read I,, ’ N(D)dD = constant 

Page 90, 6 lines from bottom of 2nd paragraph: 
“m increases with m” should read “m increases with z” 

The line following Eq. (29) should read: 

in place of: 
“where charge is fed into the drum at position z = z,” 

“where fiz(rn,z) must be finite at the apex (z = 0) of the conical drum” 
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